Bone grafting | |
---|---|
Intervention | |
A surgeon places a bone graft into position during a limb salvage. |
|
ICD-9-CM | 78.0 |
MeSH | D016025 |
Bone grafting is a surgical procedure that replaces missing bone in order to repair bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly.
Bone generally has the ability to regenerate completely but requires a very small fracture space or some sort of scaffold to do so. Bone grafts may be autologous (bone harvested from the patient’s own body, often from the iliac crest), allograft (cadaveric bone usually obtained from a bone bank), or synthetic (often made of hydroxyapatite or other naturally occurring and biocompatible substances) with similar mechanical properties to bone. Most bone grafts are expected to be reabsorbed and replaced as the natural bone heals over a few months’ time.
The principles involved in successful bone grafts include osteoconduction (guiding the reparative growth of the natural bone), osteoinduction (encouraging undifferentiated cells to become active osteoblasts), and osteogenesis (living bone cells in the graft material contribute to bone remodeling). Osteogenesis only occurs with autografts.
Contents |
Osteoconductive | Osteoinductive | Osteogenic | |
---|---|---|---|
Alloplast | + | – | – |
Xenograft | + | – | – |
Allograft | + | +/– | – |
Autograft | + | + | + |
Bone grafting is possible because bone tissue, unlike most other tissues, has the ability to regenerate completely if provided the space into which to grow. As native bone grows, it will generally replace the graft material completely, resulting in a fully integrated region of new bone. The biologic mechanisms that provide a rationale for bone grafting are osteoconduction, osteoinduction and osteogenesis.[1]
Osteoconduction occurs when the bone graft material serves as a scaffold for new bone growth that is perpetuated by the native bone. Osteoblasts from the margin of the defect that is being grafted utilize the bone graft material as a framework upon which to spread and generate new bone.[1] In the very least, a bone graft material should be osteoconductive.
Osteoinduction involves the stimulation of osteoprogenitor cells to differentiate into osteoblasts that then begin new bone formation. The most widely studied type of osteoinductive cell mediators are bone morphogenetic proteins (BMPs).[1] A bone graft material that is osteoconductive and osteoinductive will not only serve as a scaffold for currently existing osteoblasts but will also trigger the formation of new osteoblasts, theoretically promoting faster integration of the graft.
Osteopromotion involves the enhancement of osteoinduction without the possession of osteoinductive properties. For example, enamel matrix derivative has been shown to enhance the osteoinductive effect of demineralized freeze dried bone allograft (DFDBA), but will not stimulate de novo bone growth alone.[2]
Osteogenesis occurs when vital osteoblasts originating from the bone graft material contribute to new bone growth along with bone growth generated via the other two mechanisms.[1]
Autologous (or autogenous) bone grafting involves utilizing bone obtained from the same individual receiving the graft. Bone can be harvested from non-essential bones, such as from the iliac crest, or more commonly in oral and maxillofacial surgery, from the mandibular symphysis (chin area) or anterior mandibular ramus (the coronoid process); this is particularly true for block grafts, in which a small block of bone is placed whole in the area being grafted. When a block graft will be performed, autogenous bone is the most preferred because there is less risk of the graft rejection because the graft originated from the patient's own body.[3] As indicated in the chart above, such a graft would be osteoinductive and osteogenic, as well as osteoconductive. A negative aspect of autologous grafts is that an additional surgical site is required, in effect adding another potential location for post-operative pain and complications.[4]
Autologous bone is typically harvested from intra-oral sources as the chin or extra-oral sources as the iliac crest, the fibula, the ribs, the mandible and even parts of the skull.
All bone requires a blood supply in the transplanted site. Depending on where the transplant site is and the size of the graft, an additional blood supply may be required. For these types of grafts, extraction of the part of the periosteum and accompanying blood vesels along with donor bone is required. This kind of graft is known as a vital bone graft.
An autograft may also be performed without a solid bony structure, for example using bone reamed from the anterior superior iliac spine. In this case there is an osteoinductive and osteogenic action, however there is no osteoconductive action, as there is no solid bony structure.
Allograft bone, like autogenous bone, is derived from humans; the difference is that allograft is harvested from an individual other than the one receiving the graft. Allograft bone is taken from cadavers that have donated their bone so that it can be used for living people who are in need of it; it is typically sourced from a bone bank.
There are three types of bone allograft available:[5]
Artificial bone can be created from ceramics such as calcium phosphates (e.g. hydroxyapatite and tricalcium phosphate), Bioglass and calcium sulphate; all of which are biologically active to different degrees depending on solubility in the physiological environment.[6] These materials can be doped with growth factors, ions such as strontium or mixed with bone marrow aspirate to increase biological activity. Some authors believe this method is inferior to autogenous bone grafting[3] however infection and rejection of the graft is much less of a risk, the mechanical properties such as Young's modulus are comparable to bone. The presence of elements such as strontium can result in higher bone mineral density and enhanced osteoblast proliferation in vivo.
Xenograft bone substitute has its origin from a species other than human, such as bovine. Xenografts are usually only distributed as a calcified matrix. In January 2010 Italian scientists announced a breakthrough in the use of wood as a bone substitute, though this technique is not expected to be used for humans until at the earliest 2015.[7]
Alloplastic grafts may be made from hydroxylapatite, a naturally occurring mineral that is also the main mineral component of bone. They may be made from bioactive glass. Hydroxylapetite is a Synthetic Bone Graft, which is the most used now among other synthetic due to its osteoconduction, hardness and acceptability by bone. Some synthetic bone grafts are made of calcium carbonate, which start to decrease in usage because it is completely resorbable in short time which make the bone easy to break again. Finally used is the tricalcium phosphate which now used in combination with hydroxylapatite thus give both effect osteoconduction and resorbability.
Growth Factor enhanced grafts are produced using recombinant DNA technology. They consist of either Human Growth Factors or Morphogens (Bone Morphogenic Proteins in conjunction with a carrier medium, such as collagen).
The most common use of bone grafting is in the application of dental implants, in order to restore the edentulous area of a missing tooth. Dental implants require bones underneath them for support and to have the implant integrate properly into the mouth. People who have been edentulous (without teeth) for a prolonged period may not have enough bone left in the necessary locations. In this case, bone can be taken from the chin or from the pilot holes for the implants or even from the iliac crest of the pelvis and inserted into the mouth underneath the new implant.
In general, bone grafts are either used en block (such as from the chin or the ascending ramus area of the lower jaw) or particulated, in order to be able to adapt it better to a defect.
Another common bone graft, which is more substantial than those used for dental implants, is of the fibular shaft. After the segment of the fibular shaft has been removed normal activities such as running and jumping are permitted on the leg with the bone deficit. The grafted, vascularized fibulas have been used to restore skeletal integrity to long bones of limbs in which congenital bone defects exist and to replace segments of bone after trauma or malignant tumor invasion. The periosteum and nutrient artery are generally removed with the piece of bone so that the graft will remain alive and grow when transplanted into the new host site. Once the transplanted bone is secured into its new location it generally restores blood supply to the bone in which it has been attached.
Besides the main use of bone grafting – dental implants – this procedure is used to fuse joints to prevent movement, repair broken bones that have bone loss, and repair broken bone that has not yet healed.[8]
Bone grafts are used in hopes that the defective bone will be healed or will regrow with little to no graft rejection.[8]
Depending on where the bone graft is needed, a different doctor may be requested to do the surgery. Doctors that do bone graft procedures are commonly orthopedic surgeons, otolaryngology head and neck surgeons, neurosurgeons, craniofacial surgeons, oral and maxillofacial surgeons, Podiatric Surgeons and periodontists.[9]
As with any procedure, there are risks involved; among these include reactions to medicine and problems breathing, bleeding, and infection.[8] Infection is reported to occur in less than 1% of cases and is curable with antibiotics. Overall, patients with a preexisting illness are at a higher risk of getting an infection as opposed to those who are overall healthy.[10]
Some of the potential risks and complications of bone grafts employing the iliac crest as a donor site include:[10][11][12]
Bone grafts harvested from the posterior iliac crest in general have less morbidity, but depending on the type of surgery, may require a flip while the patient is under general anesthesia.[18][19]
The amount of time it takes for an individual to recovery depends on the severity of the injury being treated and lasts anywhere from 2 weeks to 2 months with a possibility of vigorous exercise being barred for up to 6 months.[8]
Bone graft procedures consist of more than just the surgery. The average cost of bone graft procedures ranges from approximately $33,860 to $37,227.[20] US Example pricing: Besides the cost of the bone graft itself (ranging from $250 to $900) other expenses for the procedure include: surgeon's fees (these vary), anesthesiologist fees (approximately $350 to $400 per hour), hospital charges (these vary; averaging about $1,500 to $1,800 a day), medication charges ($200 to $400), and additional fees for services such as medical supplies, diagnostic procedures, equipment use fees, etc.[21]
|